COSC1437 Programming Fundamentals 11 / ITSE2457 Advanced Object-Oriented Programming

The submission opens two days before the due day, and closes right at the due time. It is students’
responsibility to submit timely and correctly in order to get credits. Students MUST start each project when it
is first discussed in class in order to complete it on time. All projects are individual projects. Each submission
must include all required documents. The last submission will be graded. Project due days may be changed to better
align with lectures.

If one of the following is true, no credits will be given:

e The project is late.

e The class design is missing.

e Wrong files are submitted or part of the source codes is submitted.

e The project has errors.

e The comments are not complete.

e The project is a copy and modification of another student’s project. (Both will receive 0.)

Software Development General Project Rubric: (Design is worth 20%; the rest is worth 80 %.)
Analysis: There will be no credit if the software doesn’t meet customer specification at all.

e Does the software meet the exact customer specification?

e Does the software read the exact input data and display the exact output data as they are shown in sample
runs?

e Does each class include all corresponding data and functionalities?

Design: There will be no credit if the design is missing.

Is the main method algorithm an efficient solution?

Does the main method algorithm convert the input data into desired output data efficiently?
Is the design (a UML class diagram) an efficient solution?

Is the design created correctly?

Code: There will be no credit if there are errors.

e Are there errors in the software?
e Are code conventions and name conventions followed?
e Does the software use the minimum computer resource (computer memory and processing time)?
e s the software reusable?
Debug:

e Are there bugs in the software?

Documentation: There will be no credit if comments are not included.

Class comments must be included in Javadoc format before a class header.

Method comments must be included in Javadoc format before a method header.

Javadoc comments must be included before each instance/static variable.

More inline comments must be included in either single line format or block format inside each method body.
All comments must be complete in correct format.

A Java source file can contain a class. Each class is made up of the following components:

Inside a class,

e package statement

e import statements if any

e Javadoc class comments

o aclass header and its body. The open { of a class body must be at the end of the header.

Inside a class body,

e instance/static variables with Javadoc comments above each variable

e instance/static methods with Javadoc comments above each method header. The open { of a method body must
be at the end of the header

Inside a method body,

e more comments are included in each method body. These comments can be written in single line or block
format.

Readability:
To enforce program readability, consistent indentations must be used to show containment hierarchy. Readability is
very important. Poor readability of a source file will be ignored or misinterpreted. This will definitely affect a
software developer’s performance. Please read the following, and careful exam your source file.

1. Align Javadoc comments with its source codes.

2. Use consistent indentations to enhance readability:

Indent inside the body of a class for each instance/static variable and method of this class
Indent again in each block statement of each method.

3. Use required spaces, not excess spaces to enhance readability:

No spaces between comments and the corresponding method header.
One space after * at the beginning of each line in Javadoc comments.
Align first * of each line in Javadoc comments.

One line in between two sections of codes is needed

Comments are required almost everywhere in a source file. Double check to make sure they are completed in the
required formats. Code conventions must be used. The following contains additional information on Javadoc. The
project description starts on page 4.

package dog;

import java.util.Random; //Just a%

/** . .

* Representing a dog with a name. Import statements if el

* @author Qi Wang

* @Qversion 1.0 \

*/ { Class comments must be written in Javadoc

i open —

public /c*l*ass Dog{ P format before the class header. A description pf

TAB * The name of this dog the class, author information and version

information are required.
TAB Private String name; required

package statement is required.

TAB

/**

* Constructs a newly created Dog object that represents a dog with an empty name.

* “‘-—————_____________ .
put/>.“ ic Dog () { In method comments, the first word must be a
7as > this(""); open { capitalized verb in the third person. Use

! punctuation marks properly.

/**
* Constructs a newly created Dog object with a name.
* @param name The name of this dog

/- . Method comments must be written in Javadoc format

public Dog ring name) { o
this.na before the method header. A description of the method,

} comments on parameters if any, and comments on the
Jxx return type if any are required.

* Returns the name of this .

* @return The name of this dog A Javadoc comment for a formal parameter consists of three

*/ parts:

public Strin

N
. - parameter tag,
return th

- a name of the formal parameter in the design,
(The name must be consistent in the comments and the header.)
- and a phrase explaining what this parameter specifies

}

/ * %
* Changes the name of this .
:/@Param name The name of this A Javadoc comment for return type consists of two parts:

public void setName (String name) { - return tag,
this.name = name; - and a phrase explaining what this returned value specifies

}

/**
* Returns a string representation of this dog. The returned string contains the type of
* this dog and the name of this dog.
* @return A string representation of this dog

*/
public String toString() {
return this.getClass () .getSimpleName() + ": " + this.name;
}
/**
* Indicates if this dog is "equal to" some other object. If the other object is a dog,
* this dog is equal to the other dog if they have the same names. If the other object is
* not a dog, this dog is not equal to the other object.
* @param obj A reference to some other object
* @return A boolean value specifying if this dog is equal to some other object

*/
public boolean equals (Object obj) {

More inline comments can be included in single
return false; line or block comments format in a method.

//The specific object isn’t a dog.
if (! (obj instanceof Dog)) { \\\\\

}

//The specific object is a dog.
Dog other = (Dog)obj;
return this.name.equalsIgnoreCase (other.name) ;

Project 5 Exceptions
Files to be submitted:

¢ A UML design diagram
e Java source files
e Test data file and other supporting files if any

A program can be separated into a normal execution flow and an exception execution flow. A program can
handle Java exceptions and/or user-defined exceptions.

Part 1: Normal Execution Flow
Geometric object: (GeometricObject)

A geometric object is an object that has a color and a fill. By default, it is white and not filled. Calculating area
and calculating perimeter of a geometric object are two common behaviors. Include two abstract methods that will be
completed by its sub classes. Complete the rest of the class.

private String color;

private boolean filled;

public abstract double getAreal();

public abstract double getPerimeter();

Triangle Object: (Triangle)

A triangle is a specific geometric object. Class Triangle should be a sub class of GeometricObject . By
default, a triangle is a default geometric object plus three sides of length 1(sideOne, sideTwo, and sideThree).
Implement getArea() and getPerimeter(). Complete the rest of the class.

Part I: Exception Execution Flow

In a triangle, the sum of any two sides is greater than the third side. Class Triangle must adhere to this rule. If a
triangle is created with sides that violate the rule, an lllegalTriangelException object should be thrown. Create class
Illegal TriangelException as a subclass of java.lang.Exception class. It has a constructor that constructs a new
exception with a specified message

public class IllegalTriangleException extends Exception {

public IllegalTriangleException (String message) { .. }
}

Now it is time to add exception execution flow in Triangle class. Check each method, include the codes that may
throw exceptions in a try block, and then add exception handlers. Always add a generic exception handler at the end to
catch any exceptions.

In Triangle class, if a method forms a triangle or changes any side of a triangle, this method may throw an illegal
triangle exception. Therefore, illegal triangle exceptions should be handled. An exception can be

e caught and handled where it occurs.
e propagated to be handled in next method in calling hierarchy.

In this project, catch and handle lllegalTriangleException and other exceptions where they occur. The following shows
one example that handles an exception where it occurs. If three sides don’t construct a legal triangle, an
Illegal TriangelException object is thrown, and it is caught in the first exception handler.

public Triangle (int sideOne, int sideTwo, int sideThree) {
try{
if a legal triangle can be formed with sideOne, sideTwo, and sideThree
Assign three sides to form a triangle.
else
Throw an IllegalTriangelException object using a throw statement.
This object is caught and handled by the matching exception handler.
}
catch (IllegalTriangelException ex) {
Print stack trace
}
catch (Exception ex) {
All other exceptions handler
}
finally{
Cleanup code if any

}

Test Class:

Note: It is required to store all testing data in a file. No credit will be given if not.
It is required to use decomposition design technique. No credit will be given if not.

To test the design, a list of triangles is needed (ArrayList<GeometricObject>). To create a Triangle object, we only
need to store five data: a color, a fill, sideOne, sideTwo, and sideThree. A triangle is created if the sum of any two
sides is greater than the third side. Exceptions are thrown otherwise. Here are sample data:

white true 345
red false 12 3
blue false 22 1

It is REQUIRED to create a list of 10 triangles. Store them in an array list, and print them. It is not efficient to let
main to do all. Method main should be very small and should be the only method in the class. It should invoke a
method (start) that is decomposed into more methods (createList, displayList). Include these methods in a separate
class. Every method should be designed as a single-minded method.

public class TriangleTest({
public static void main(String[] args) {
TriangleUtility.start();
}
}

public class TriangleUtility{
/**
* Creates a list of triangles, and prints them in order.
*/
public static void start() {
ArrayList<GeometricObject> triangles = new ArraylList<GeometricObject>();
createlist (triangles);
displaylList (triangles);

/**

* Creates a list of triangles.
* @param triangles A reference to an array list of triangles
*/
public static void createList() {
Scanner input = ..

}
/**
* Displays a list of triangles.
* (@param sections A reference to an array list of triangles
*/
public static void displayList(ArrayList< GeometricObject> triangles) { .. }
}

In method createL.ist, next, nextBoolean, and nextint methods of Scanner class are used. Method next can throw any
one of the following two Java exceptions:

NoSuchElementException - if input is exhausted
IllegalStateException - if this scanner is closed

Method nextBoolean can throw any one of the following three Java exceptions.
InputMismatchException - if the next token does not match the Integer regular expression, or is out of range
NoSuchElementException - if input is exhausted
IllegalStateException - if this scanner is closed

Method nextInt of can throw any one of the following three Java exceptions.
InputMismatchException - if the next token does not match the Integer regular expression, or is out of range
NoSuchElementException - if input is exhausted
IllegalStateException - if this scanner is closed

Method createList need to handle all three exceptions. The exceptions handlers can simply print the stack trace.

Notice that it is required that exceptions are caught and handled where they occur in this project. Here is information
on propagating an exception. An exception can be thrown, and a method further up the call stack will handle it.
Propagating an exception is better when there is not enough information to handle the exception properly by the time
the code is written. Or the exception can be handled differently by different users of this class.

To specify a method can throw exceptions, add a throws clause to the method header for the method. A throws
clause consists of reserved throws and the data type of the exception. Add

throws IllegalTriangleException

to the end of the method header to specify that this method can throw an IllegalTriangleException object. If a method
specifies that it can throw exceptions, a throw statement must be added the exception is thrown. A throw statement
consists of reserved word throw and an object of the exception class.

throw new IllegalTriangleException(“Illegal Triangle: ..”)

The following codes show the entire example:

public Triangle(int sideOne, int sideTwo, int sideThree) throws IllegalTriangleException{
if a legal triangle can be formed with sideOne, sideTwo, and sideThree({
//make a triangle/Assign three sides
telse(
//Throw an IllegalTriangelException object using a throw statement.
//The object is passed to and handled by a method further up the call stack
throw new IllegalTriangleException(“Illegal Triangle: ..”)

http://docs.oracle.com/javase/7/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/7/docs/api/java/util/InputMismatchException.html
http://docs.oracle.com/javase/7/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/IllegalStateException.html
http://docs.oracle.com/javase/7/docs/api/java/util/InputMismatchException.html
http://docs.oracle.com/javase/7/docs/api/java/util/NoSuchElementException.html
http://docs.oracle.com/javase/7/docs/api/java/lang/IllegalStateException.html

Constructors and method toString are tested so far. Should other methods be tested? Of course! It is your
responsibility to test other methods. Keep everything as simple it shows above when you submit the project.

